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If a partial structure is not available because: (1) 
the Patterson synthesis is not calculated; (2) the map 
is calculated but it is difficult to solve; (3) a light-atom 
structure is studied; then the mere information on 
the pseudotranslational symmetry may be used in 
order to normalize the structure factors correctly. 
In the second paper of this series (Cascarano, 
Giacovazzo & Lui6, 1985) the same information 
will be used in order to estimate triplet invariants. 

A P P E N D I X  

It is well known that 
ri--1 

Y. sin (x +/cy) 
k=0 

=sin [x + ( n -  1)y/2] sin [ny/2]/sin [y/2], 

(A.1) 

n--1 

X cos (x+ ky) 
k=0 

= cos Ix + (n - 1)y/2] sin [ny/2]/sin [y/2]. 

(A.2) 

From (A.1) and (A.2), (A.3) follows: 
tp rl--I 

Fph = Y~ fj X exp 2~rih(rj + vu) 
j = l  v----0 

_ -sinn~hu ~fjexp2,rr ib  r j + n - l u .  (A.3) 
sm ~rhu j--1 2 

From (A.3) the following factorization rule follows: 
nt-1 n2-1 

X exp 27rih(rj + vlul +/,/282) 
v l = 0  v2----0 

nt--1 n2--1 

= ~ exp (27rihvlul) ~ exp 2~rih(rj + •2u2) 
v t =0 v.2=0 

(n21)] sin n27rhu 2 exp 2~nh u2 
- sin "n'hu 2 T 

nt--1 

x • exp 21rih(rj +/]1Ul) 
Vl=0 

sin nllrhul sin n2~llll2 

sin ~rhul sin ~hu2 

xexp 2~rih[rj +½(n, -  1)ul +½(n2-1)u2]. 
(A.4) 
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Abstract 

Additional information of various kinds on the struc- 
ture, such as 'atomicity', noncrystallographic sym- 
metry, known molecular boundaries, nonnegativity 
of the electron density and so forth, may be described 

0108-7673/85/060551-06501.50 

by an equation p = z[p] or by the corresponding 
system of equations for structure factors. To use this 
information, one tries generally to solve the 'phase' 
part of the structure-factor equations by simple iter- 
ations. The complete system of equations can, 
however, be used for phase refinement if the latter is 
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552 FAST DIFFERENTIATION ALGORITHM FOR PHASE REFINEMENT 

defined as a minimization of the corresponding func- 
tion. For the functions expressing various kinds of 
information gradient computation algorithms are 
proposed, each taking as much time as the computa- 
tion of the proper function does. 

Introduction 

In several cases the 'experimental' moduli and the 
'isomorphous' phases of structure factors do not allow 
the electron density distribution p(r) to be calculated 
to the required accuracy. Therefore, it is desirable 
that the electron density maps should be improved 
by the use of additional information on the object 
('atomicity', noncrystallographic symmetry etc.). In 
§ 1 we shall show that in most cases this information 
can be represented as 

p=  ~[p], (1) 

where r[p] is a transformation of the function p(r). 
Equation (1) is equivalent to the corresponding 

system of equations for structure factors: 

Fs exp (i~s)= ~;s(r{(1/ V) Y'. F~ 
II 

×exp (i~,.) exp [-27ri(u, r)]}), s ~ ' .  
(2) 

Here ~ '  is the reciprocal-space lattice and ~s{a(r)} 
is the Fourier transform of the function a(r) at 
point s: 

~s{a(r)} = ~ a(r) exp [27ri(s, r)] dye, (3) 
V 

Fs exp (itps)= ~s{p(r)}. (4) 

In this paper we assume that the structure-factor 
moduli {Fs} are known from the experiment, which 
makes it possible to consider the system (2) suitable 
for determination or refinement of the phases {~s}. 
The alternative variational techniques for improve- 
ment of p(r) have been proposed by Navaza, Castel- 
lano & Tsoucaris (1983). 

Each of the complex equations (2) is equivalent to 
two real equations representing the 'modulus' part 
of (2): 

Fs=l~;s(r{(1/V) • Fu exp ( i~ )  
U 

× exp [ - 2  rri (u, r) ]})l, ( 5 ) 

and their 'phase' part 

¢~ = arg [~(~'{(1/V) E Fu 
I! 

× exp (itpu) exp [-2zri(u, r)]})]. (6) 

Here arg z is the phase of a complex number z. 
It has become common practice to use (2) by solv- 

ing merely their phase part (6). Usually, (6) are solved 

by simple iterations (Zwick, Bantz & Hughes, 1976), 
i.e. by substituting the values of phases determined 
in the previous iteration into the right-hand part of 
(6). In more detail the procedure consists in the 
following: 

(a) one calculates 

p(r) = (1/V) ~ Fs exp [i~p(k)] exp [--27ri(s, r)], 
s 

(7) 

where Fs are the observed structure moduli and ~t)~ k) 
are the previously determined phases; 

(b) one transforms 

p -* r[p] 

and calculates structure factors of the transformed 
electron density distribution: 

gsexp(i~bs)= ~ r[p](r)exp[27ri(s,r)]dVr, (8) 
V 

taking the obtained phases as new values for the 
unknown ones 

~ ( k + l )  
s ~ ~ s -  

This procedure may generally be criticized on two 
points. Firstly, the 'modulus' part, i.e. 'half '  of (2), 
is ignored, which sometimes leads to other solutions 
(the self-consistent sets of phases). Secondly, simple 
iterations may show divergence. In a special case, 
that of Sayre's equations, a complete system was used 
for rubredoxin (Sayre, 1972). The phases were derived 
from the discrepancy minimum 

R(q~) = ~ lasFs exp ( ics ) -  ~;s({(1/V) 
s 

×~,Fnexp[i~o-2~ri(u,r)]}2)l 2. (9) 
n 

Here as is a special function compensating for a 
truncation of the series in calculating p(r). A similar 
approach can also be applied to any other equations 
of type (2). The general structure of the criterion to 
be minimized is described in § 2. In Sayre's minimiz- 
ation of criterion (5) the most difficult task was to 
compute the gradient VR and the product V2Re of 
the matrix of second deivatives into a vector, which 
were necessary for the method of conjugate gradients. 
Later Sayre & Toupin (1975) modified the algorithms 
in order to simplify the computation of these values. 
Recently Kim, Nesterov & Cherkassky (1984) have 
established that for a function R all the components 
of the vectors V R and V2Re require as much computa- 
tion as one value. More precisely, T(VR) = O[ T(R)] 
where T(R)  is the time of computation of R and 
T(VR) is the total time needed to compute all the 
components of VR. This algorithm has been adapted 
for structure refinement by Lunin & Urzhumtsev 
(1984, 1985). It is shown in § 3 how the algorithm of 
Kim et al. can be implemented to calculate VR for 
the general type of criterion relative to the system (2). 

We shall restrict ourselves to space group P1. 
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1. Equations for the density 

It will be shown in this section that a number of 
available methods for phase improvement are only 
the solution of the phase part of (2) corresponding 
to a transformation z(p). 

1.1. Separate atoms 

Sayre (1952) obtained equations for structure fac- 
tors, assuming that the density p(r) is composed of 
the contributions of identical quite separate atoms 
with {rj} coordinates: 

p(r) = E po(lr- rsl), 
J 

where 

o0( I r -  rsl)po(Ir-  rkl) - 0 for j # k. (10) 

If we follow Sayre, we can easily prove that if this 
hypothesis is true for any function A(t) such that 
A (0)= 0 the following equations are valid: 

Fs exp (i~os) = [fo(s)/fx (s)]~s{A[p(r)]} 

=ff;~{aa(z)* A[p(r)]}, (11) 

i.e. the function p(r) satisfies 

p=ax * A(p). (12) 

Here 

fo(S)=(2/s) j rpo(r) sin27rsrdr, (13) 
o 

tad 

f~(s)=(E/s)  ~ rA[po(r)]sinE~rsrdr, (14) 
o 

O0 

aA(r)=(2/r) ~ s[fo(s)/fx(s)]sin2~rsrds, (15) 
o 

where s = Is] and r = Ir], and * is the convolution on 
r. Note that the function aa (r) does not depend on 
the position of atoms. Sayre's equations are derived 
if A (t) = t 2. Iterative solution of their phase part (6) 
coincides with the tangent formula refinement and 
for the non-square function A (t) is called 'the method 
of electron density modification'. These approaches 
are now in current use (Sayre, 1980). 

1.2. Local ( noncrystallographic ) symmetry 

The crystals of biological macromolecules are often 
locally symmetric. This implies that for the points of 
a bounded region 

p(Gr+t)=p(r) ,  r~12, (16) 

where G is the rotation matrix and t is the translation 
vector. In contrast to the crystallographic symmetry 
where (16) is valid for all rE R 3, here it holds only 
for r ~ 12. We restrict for simplicity the function p (r) 
to have one local symmetry transformation. 

The property (16) is equivalent to (1) with 

{~ (Gr+t),  r~ 12, 

z[p](r) = (r) for the other points in 
the unit cell. 

(17) 

We can choose a more symmetric transformation 
z[p], since the property (16) is equivalent to the pair 
of equations 

p(r) =½[p(r)+ p(Gr+t)] ,  
(18) 

p(Gr+t)=½[p(r)+p(Gr+t)], r~12, 

i.e. to (1) with 

I½[p(r)+p(Gr+t)],  re  12, 

~½{p[G-X(r-t)]+p(r)}, reG12+t ,  (19) 
~'[p](r) 

=1 p(r) for the other points in 
( the unit cell. 

Iterative solution of the phase part of the correspond- 
ing system (2) coincides with the method of phase 
improvement owing to the widely used noncrystallo- 
graphic symmetry electron density averaging (Argos 
& Rossmann, 1980). 

A more general form of (1) for the local symmetry 
can be obtained if 

IA[p(r), p(Gr+t)] ,  re  g2, 
=~A{p[G-X(r-t), p(r)]}, r~G12+t ,  

z[p](r) ]p(r) for the other points in (20) 
[ the unit cell, 

where A (x, y) is a function such that A (x, x) = x [in 
the transformation (19) A (x, y) = ½(x + y)]. Note that 
(1) with ~-[p] given by (20) is equivalent to (16). 

1.3. The known part of the distribution p(r) 

If it is established that the region 12 is filled by the 
solvent with a constant density, 

~.[p](r) = {po for r~ 12, (21) 
p(r) for the other points. 

Iterative solution of the phase part of the correspond- 
ing equations (2) was used, for example, by Hendrick- 
son, Klippenstein & Ward (1975). There are a few 
cases when the electron density distribution po(r) in 
the region 12 may be prescribed, for instance, as with 
the interpreted region of the unit cell. Then, we can 
determine ~[p] .by 

po(r) for re  12, 
"/'[p](r) (22) 

t p(r) for the other points. 

A similar approach based on the isolation of several 
maximum peaks was proposed by Bukvetskaya, 
Shishova, Andrianov & Simonov (1977). 
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1.4. Nonnegativity of p(r) 

The nonnegativity of the distribution p(r) is 
equivalent to (1) where 

p(r) i fp(r)->0,  (23) 
r[p](r)  = 0 i fp(r )  <0.  

Iterative solution of the phase part of the correspond- 
ing equations (2) has also found application (Nixon 
& North, 1976). There is a more general form of the 
transformation (23), using the lower cut level q 
instead of 0 (Sirota & Simonov, 1970). 

1.5. Functions with a finite set of values 

In a number of cases the function p(r) can be 
approximately assumed to have only a finite set of 
values. For instance, Vainshtein & Khachaturyan 
(1977) considered that 

p(r) ={0 or 1}. (24) 

Let A (t) be a function such that 

X ( t ) = t  only if t = 0  or i f t = l .  (25) 

It is evident that in this case the condition (24) is 
equivalent to (1) with 

r[p](r) = A[p(r)]. (26) 

In a more general case the function p(r) can have 
a finite set of values P1,.. . ,  Pk SO that 

p(r) ={P, or P2,...,or Pk}, (27) 

which is equivalent to (1) with r[p], defined by the 
equality (26), where the function A (t) is such that 

A(t) = t only if t = P~, if t = P2 , . . . ,  if t = Pk. (28) 

Note that the phase part of (2) with r[p] defined 
by (26) coincides with that of (11) obtained for the 
case of separate atoms. The 'method of electron 
density modification' may thus imply the search for 
not only a function satisfying the condition (10) but 
also for those having a finite number of values deter- 
mined by the condition (28), and the prescribed struc- 
ture moduli. In particular, the functions satisfying 
the conditions (10) and (24) would both be solutions 
of the phase part of Sayre's equations. 

2. Structure of the minimized criterion 

2.1. It has been shown in the previous section that a 
great number of methods for phase refinement may 
be interpreted as the iterative solution of the phase 
part of (2). Sayre (1972) noted that the complete 
system (7) with ;t (t) = t 2 provides a more successful 
calculation than its phase part taken alone. Similarly, 
the other cases considered in § 1 can be expected to 
give better results if the information of (2) is used 

completely. As far as computations are concerned, 
the solution of an overdetermined system, such as 
system (2) containing twice as many equations as 
unknowns, usually implies the minimization of a 
function representing the discrepancy in these 
equations. Further, we shall give the general form of 
such a function but beforehand it is worth mentioning 
briefly why it is desirable to consider the minimized 
function in a general form. 

In all the cases equations (2) are approximate. 
Firstly, this is because the initial hypotheses con- 
cerning the properties of the function p(r) are 
approximate. These hypotheses may be realized if 
one introduces weight functions in the calculation of 
p(r). For instance, the application of normalized 
structure factors may give a better atomic separation 
in (10), the use of syntheses weighed by the figure of 
merit may result in a more precise equality (16) etc. 
Therefore, we shall assume that the function p(r) is 
calculated by the more general formulae (32) rather 
than by (7). 

Secondly, errors in (2) may result from truncations 
of Fourier series in calculating p(r). The values of 
the errors may be reduced if we properly correct (2). 
For example, criterion (9) applied to rubredoxin 
(Sayre, 1974) gave the following correction for the 
modulus part of (2): 

as=(a-fls-ys2)Vfa(s)/ fo(s) .  (29) 

By modifying the tangent formula, Olthof, Sint & 
Schenk (1979) introduced a correction into the phase 
part of Sayre's equations to compensate for low resol- 
ution. 

Generally, phase information is used as the proba- 
bility distributions P(~, s) for the values of phase ~o. 
These distributions are usually written in a more 
general form (Hendrickson & Lattman, 1970): 

P(~o, s) --- exp {As cos ~o + Bs sin ~o 

+ Cs cos 2~ + Ds sin 2~o} (30) 

and can be used for further stabilization of the phase 
values in solving system (2). In this case the mini- 
mized function of type (9) is appended by 

-Y~ {As cos Cs+ Bs sin ~s+ Cs cos 2~0s+ Ds sin 2~s} 
s 

(31) 

(Lunin & Urzhumtsev, 1984). Therefore, instead of 
criterion (9) we shall take the more general criteria 
(35). 

2.2. The problem of phase refinement based on the 
equations of type (1) can now be reduced to the 
minimization of the criterion R(q~) calculated as 
the following chain of transforms: 
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(a) Calculation of the 'density" for re  Up. 

P,= Re { Fs B.exp (i~o.) exp [-2wi(s,r)]} 
S 0 

= E Bscos{-2w(s , r )+q~} .  (32) 
s~ So 

Here So is the set of reflexions with refinable phases 
(we assume that all the phases are refined indepen- 
dently); Up is a grid in the unit cell; Pr is the electron 
density p(r) at point r of the grid Up [we write 
P = {Pr}r~ Cr o for the set of values of the function p(r) 
at points of the grid Up]; B~ are the known values 
including weights, experimentally determined moduli 
F~, factor 2 / V  etc. 

( b ) Transformation of the density. 

Zr=,Xp), re u,. (33) 

Here U, is a grid in the unit cell, which may disagree 
with Up; %(p) are given functions determining values 
of the transformed density at grid points r e U,. 

(c) Calculation of the 'modified' structure factors. 

gff+ig~=C E rrexp[2~ri(s ,r)] ,  s e S  1. (34) 
r~ U T 

Here the  set of structure factors S~ can differ from 
the set So. 

( d) Calculation of the criterion. 

R = X q(~Ps, gR, g~; S). (35) 
s~ Sl 

Here q(0, u, v; s) are given functions including the 
corrections. For criterion (9) these are 

q(q~, g~, g~; s)=[a~Fsexp (i~o~)-(g~ + ig~)[ 2. (36) 

3. Gradient computation 

When minimizing a complex function of a large num- 
ber of variables, the most difficult task is generally to 
compute the gradient of this function and the product 
of the matrix of second derivatives into a vector. For 
the function (9) Sayre & Toupin (1975) suggested an 
effective algorithm that could in particular compute 
the gradient VR as fast as the value o f  R. For an 
arbitrary ci'iterion determined by the chain of trans- 
forms (32)-(35) a similar algorithm can also be 
obtained by the fast differentiation (Kim et al., 1984; 
Lunin & Urzhumtsev, 1985). In this paper we restrict 
ourselves to the general case of the algorithm for the 
computation of VR (for R, see § 2). 

The fast computation algorithm implies that the 
minimized function can first be represented as a chain 
of substitutions of variables that should be as simple 
as possible. Further computation will only involve 
transformation of the gradient with respect to one set 
of variables into that with respect to the others. 

Thus, we begin with computing the gradient with 
respect to the variables R i ~0s, gs ,  gs, assuming them to 
be independent in (35). This computation does not 

present any difficulty 

' ~ =  0 )_,q(q~., n x 0 g . ,  g . ;  u) = ~-:~ q(tp., gR, g. ;  s), 
0¢Ps n 

_2o _o 
GR = og R R = og R q( ~os, g~, g~ ; s), (37) 

o o__ g,. 
Ogl R = Ogl q( ~p~' g R, s), s e S,. 

The next step is to transform the derivatives with 
respect to {gR, g~} into those with respect t o  {%} 
making up (34). It is clear that 

= 0 R = E  OR g, +OR 
T ,  0¢, ,~s, 0¢r ~ -0"%-%1 (38) 

=C Re{s~s (GR+iG:)exp[-2wi(s,r)]},  re U,. 

Then, by (33), we can determine the derivatives of R 
with respect to {Pr} through the values { Tr}r~ v~: 

a O R  0'T r, 
P , = a p r R =  Y'. , r e  Up. (39) 

• 'e u. O'rr, Opt 

Let us detail the last equality for some special cases. 
If  ¢[p] = h (p) and U, = Up = U, then 

0 , ,  { ; ' (p , )  f o r r = r '  
OP-~p~ - f o r r ~ r '  (40) 

so that Pr = h'(pO Tr. 
Let z[p] be given by (20). We assume that Up = 

U, = U and G r +  t is a point of the grid U if r is a 
grid point. Practically, one cannot obtain direct hits 
of Gr + t at a grid point, therefore one has to interpo- 
late the values at the nearest points, which leads to 
an additional linear transform in the chain (32)-(35) 
with a sparse matrix. Let us write 

/ ~ I ( U ,  1))=O•(U, I))/OU, I~2(U , l))=O,~(U, I))/01). ( 4 1 )  

Then, (22) assumes the form 

{ P, = x~(p,, o'G,+t)[ T,+ TCr+t], r e a ;  

Pcr+,= A2(p, OG,+,)[Tr+ Tcr+,], r e  O; (42) 

Pr = T, for the other points. 

In particular, if the local symmetry averaging (19) is 
used 

P,=½[T,+ rGr+,], rea;  

Pcr+t = ½[ Tr + TG,+t],r e O; (43) 

P, = Tr for the other points. 

and transform (39) coincides with transform (19). 
It is obvious that for transform (22) formulae (39) 

are 
0 for r e 0 

Pr = T, for the other points. 
(44) 



556 FAST D I F F E R E N T I A T I O N  A L G O R I T H M  FOR PHASE R E F I N E M E N T  

For transform (23) they are 

/oTr if pr-->0, 
Pr= , , ,  if pr<0.  

(45) 

Finally, we are to pass to the gradient of R with 
respect to the variables {~,}, with both the direct 
dependence between R and {q~,} and the complex 
dependence between p and q~ taken into account: 

~ =___~O R = t~s+ ~ OR ap, 
a~s r~U. apr a~s 

= q ~ , + I m { B ,  e x p ( - i e , )  E P~ 
r~ U o 

× exp [21ri(s, r)]}, s ~ So. (46) 

It is easy to see that the chain of transforms (37)-(46) 
requires as much computation as the chain of trans- 
forms (32)-(35) needed to compute the criterion 
R(q~). 

4. Efficiency of the algorithm 

In conclusion, we shall discuss the efficiency of our 
algorithm compared with the known methods. For 
the transform p(r)--> A[p(r)] applied to atomic sepa- 
ration or a function with a finite number of values, 
and for the transforms (22) and (23) the steps (33), 
(35), (37) and (39) need too little time to be compared 
with the Fourier transforms (32), (34), (38) and (46). 
Therefore the computation of R and V R is here 
reduced essentially to the four FFTs, as in the Sayre- 
Toupin case. 

The transforms (18) and (43) may be less efficient 
than p--> p2, as they sometimes require to interpolate 
the values of p to points Gr + t, not at the grid points. 
The speed of such transforms does not, however, 
exceed that of FFTs, so the entire computational cost 

increases only by less than 1.5 times compared with 
the Sayre-Toupin algorithm for (9). 

If we compare our algorithm to the method of 
electron density modification, we can see that the 
function R and the gradient V R require approxi- 
mately twice as much computation as the modification 

--> P--> 9' .  But in this paper we have used the com- 
plete system of equations (5)-(6) and avoided the 
shortcomings of the method of simple iteration men- 
tioned in the Introduction. 
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Abstract 

The strong tendency to aggregate of coat protein 
molecules of  simple plant viruses has been represen- 
ted by means of self-assembling molecular models. 
These models are made of ferrite magnets and are 
similar to molecular models designed for the purpose 

0108-7673 / 85 / 060556-04501.50 

of simulating crystal structures. Capsid structures of 
isometric viruses are simulated by assembling dipolar 
spheres. The double-disk and helix structures of 
tobacco mosaic virus protein are simulated by assem- 
bling dipolar molecular models in a characteristic 
shape. 

O 1985 International Union of Crystallography 


